
<u>Chapter 4</u> :Oxygen Up-take and Carbon Dioxide Release: RESPIRATION

Activity 2: Respiratory System and Gas Exchange (p. 66 - 67)

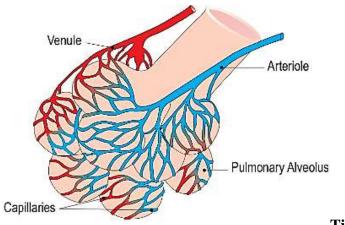
1. Respiratory Movements

The respiratory movement consists of : inhalation (inspiration) or exhalation (expiration)

Inhalation	When air enters the lungs
Exhalation	When air is released from the lungs, by the nose

• <u>**Pharynx**</u> = crossroads of the respiratory and digestive tracts.

- <u>**Ribs**</u> = bones of the thoracic cage.
- <u>**Diaphragm**</u> = respiratory muscle.
- <u>**Pleura**</u> = a membrane surrounding the lungs.
- <u>Lungs</u> = spongy and elastic organs.


Title: Respiratory System

RESPIRATORY SYSTEM = Set of respiratory organs				
Respiratory Tract		Lungs e thoracic cage)		
- Nasal cavity (fossae)	Right lung	Left lung		
- Pharynx				
- Larynx	Discouther the left lung	Smaller than the right lung		
- Trachea	Bigger than the left lung	because of the heart		
- Bronchus				

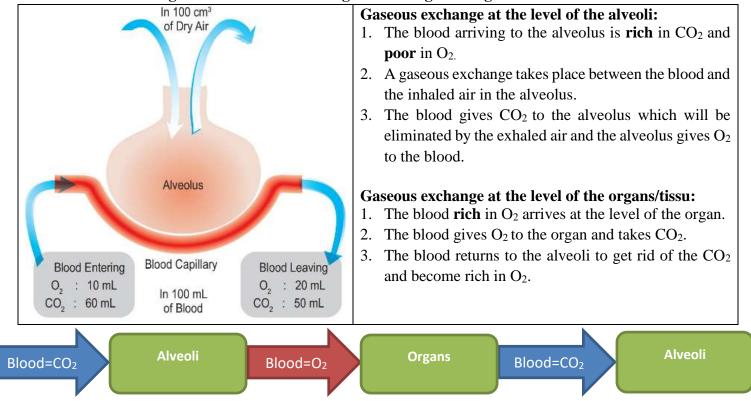
↓ Path of the **inhaled air**: nose → pharynx → larynx → trachea → bronchus → bronchioles → alveoli

4 Path of the **exhaled air**: opposite direction of the path of the inhaled air.

2. Pulmomary alveoli

Title: Pulmonary alveoli

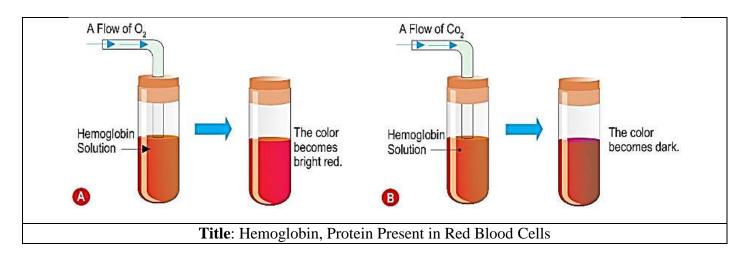
4 Role: the alveoli ensure the respiratory gas exchange.


Characteristics of alveoli:

- Thin alveolar wall
- Large surface area
- Rich in blood vessels

Doc.1 : Gaseous exchange at the level of the lungs Carbon dioxide to be exhaled Oxygen-rich blood Inhaled air: rich in Inhaled oxygen (which will go O₂ and poor in CO₂. back to the alveolus. heart and enter the systemic circulation) Deoxygenated blood carrying carbon dioxide Exhaled air: rich in Carbon dioxide CO₂ and poor in O₂. Oxygen capillary.

4 Gaseous Exchange in the Alveolus:


• Doc. 2: Volume of gases in the blood entering and leaving the lungs.

□ <u>Activity 3:</u> Transport of the Respiratory Gases (p. 68 - 69) □

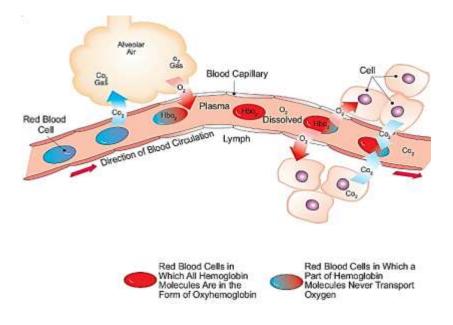
Blood Is made of :					
Blood	Cells	Platelets	Plasma (\cong 55% of the blood)		
Leucocytes (= White Blood Cells)	<u>Red Blood</u> <u>Cells</u> (≅ 45% of the blood)	Have role in the blood coagulation			
Cells with nucleus	 Cells without nucleus Contain proteins rich in iron <u>Hemoglobin</u> (Hb) (responsible of the red color of RBC) 		 After getting out of the vessels, the blood coagulates. The blood constituents are separated by Centrifugation. 		

Transport of gases by Hemoglobin:

4 Transport of Oxygen:

$Hb + O_2$				HbO2 Reversible Reaction	
At the level of the cells (medium poor in O ₂)		HbO ₂			$\begin{array}{l} Hb + O_2 \\ (red \ dark \ color) \end{array}$
At the level of the lungs (medium rich in O ₂)	Hb	+	O ₂		HbO ₂ (= Oxyhemoglobin) (bright red color)

- ✓ 98 % (*large quantity*) of O_2 is carried by Hemoglobin.
- ✓ Small quantity of O_2 (≅ 2%) is carried by the plasma.


Transport of carbon dioxide:

At the level of the cells (medium rich in CO ₂)	Hb	+	CO ₂		HbCO ₂ (= Carbohemoglobin)
At the level of the lungs (medium poor in CO ₂)		HbCO ₂			$Hb + CO_2$
$Hb + CO_2$	-			HbCO ₂ Reversible Reaction	

✓ 30% of CO₂is carried by Hemoglobin.

 \checkmark 70% of CO₂is carried by the plasma in the dissolved form of dissolved carbonated compounds.

4 Sum-up scheme:

Diffusion :

- Takes place in the alveoli.
- Diffusion is the passage of gas particles from a medium of high gas pressure to a medium of low gas pressure.

Medium	Pressure (in mmHg)			
Medium	Oxygen	Carbon Dioxide		
Alveolar air	100	40		
Blood entering the lungs	35 to 40	46		

Table showing the pressure of two CO_2 and O_2 in two media: alveolar air and blood entering the lungs

Compare:

- The pressure of oxygen gas in the alveolar air (100 mmHg) is greater than that in the blood entering the lungs (35 à 40 mmHg).
- The pressure of carbon dioxide gas in the alveolar air (40 mmHg) is less than that in the blood entering the lungs (46 mmHg).

Conclude:

- O₂ will diffuse from the alveolus, where its pressure is high(100 mmHg), to the blood, where its pressure is low (35 à 40 mmHg).
- CO₂ will diffuse from the blood, where its pressure is **high**(46 mmHg), to the alveolus, where its pressure is **low**(40 mmHg).

Activity 4: Pollution and Respiratory Disturbances (p. 70 - 71)

- Air pollution and smoking cause the entry of many harmful substances into the respiratory system such as sulfur dioxide, nitrogen oxide and nicotine from tobacco.
- Certain substances disrupt the functioning of the respiratory system and can cause illnesses (diseases).
 <u>Ex:</u> Carbon monoxide (found in cigarettes) is transported by hemoglobin from the blood and forms the compound HbCO: Hb + CO → HbCO

Toxic Gases:

Pollutants	Effects
Carbon Monoxide	obstructs oxygen transport by the blood.
Benzene	causes lung cancer.
Sulfur Dioxide	causes coughing and respiratory disturbance.
Nitrogen Oxides	provoke asthma attacks and increase the sensitivity of a child's bronchi to infections.
Ozone	provokes a decrease in the pulmonary function.
Fine Particles: lead, asbestos	cause infections and cancer.

• Asthma: a disease characterized by an excess of respiratory troubles.